Interplay between Cytosolic Dopamine, Calcium, and α-Synuclein Causes Selective Death of Substantia Nigra Neurons
نویسندگان
چکیده
The basis for selective death of specific neuronal populations in neurodegenerative diseases remains unclear. Parkinson's disease (PD) is a synucleinopathy characterized by a preferential loss of dopaminergic neurons in the substantia nigra (SN), whereas neurons of the ventral tegmental area (VTA) are spared. Using intracellular patch electrochemistry to directly measure cytosolic dopamine (DA(cyt)) in cultured midbrain neurons, we confirm that elevated DA(cyt) and its metabolites are neurotoxic and that genetic and pharmacological interventions that decrease DA(cyt) provide neuroprotection. L-DOPA increased DA(cyt) in SN neurons to levels 2- to 3-fold higher than in VTA neurons, a response dependent on dihydropyridine-sensitive Ca2+ channels, resulting in greater susceptibility of SN neurons to L-DOPA-induced neurotoxicity. DA(cyt) was not altered by alpha-synuclein deletion, although dopaminergic neurons lacking alpha-synuclein were resistant to L-DOPA-induced cell death. Thus, an interaction between Ca2+, DA(cyt), and alpha-synuclein may underlie the susceptibility of SN neurons in PD, suggesting multiple therapeutic targets.
منابع مشابه
Cytoprotective effect of chlorogenic acid against α-synuclein-related toxicity in catecholaminergic PC12 cells
Parkinson's disease is a major neurodegenerative disease involving the selective degeneration of dopaminergic neurons and α-synuclein containing Lewy bodies formation in the substantia nigra. Although α-synuclein is a key molecule for both dopaminergic neuron death and the formation of inclusion bodies, the mechanism of α-synuclein induction of Parkinson's disease-related pathogenesis is not un...
متن کاملCan Interactions Between α-Synuclein, Dopamine and Calcium Explain Selective Neurodegeneration in Parkinson's Disease?
Several lines of evidence place alpha-synuclein (aSyn) at the center of Parkinson's disease (PD) etiology, but it is still unclear why overexpression or mutated forms of this protein affect some neuronal populations more than others. Susceptible neuronal populations in PD, dopaminergic neurons of the substantia nigra pars compacta (SNpc) and the locus coeruleus (LC), are distinguished by relati...
متن کاملEndogenous alpha-synuclein influences the number of dopaminergic neurons in mouse substantia nigra
The presynaptic protein α-synuclein is central to the pathogenesis of α-synucleinopathies. We show that the presence of endogenous mouse α-synuclein leads to higher number of dopaminergic neurons in the substantia nigra of wild-type C57Bl/6J mice compared with C57Bl/6S mice with a spontaneous deletion of the α-synuclein gene or C57Bl/6J mice with a targeted deletion of the α-synuclein gene. Thi...
متن کاملInteraction between Neuromelanin and Alpha-Synuclein in Parkinson’s Disease
Parkinson's disease (PD) is a very common neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) into Lewy body (LB) inclusions and the loss of neuronmelanin (NM) containing dopamine (DA) neurons in the substantia nigra (SN). Pathological α-syn and NM are two prominent hallmarks in this selective and progressive neurodegenerative disease. Pathological α-syn can indu...
متن کاملMutant α-synuclein enhances firing frequencies in dopamine substantia nigra neurons by oxidative impairment of A-type potassium channels.
Parkinson disease (PD) is an α-synucleinopathy resulting in the preferential loss of highly vulnerable dopamine (DA) substantia nigra (SN) neurons. Mutations (e.g., A53T) in the α-synuclein gene (SNCA) are sufficient to cause PD, but the mechanism of their selective action on vulnerable DA SN neurons is unknown. In a mouse model overexpressing mutant α-synuclein (A53T-SNCA), we identified a SN-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 62 شماره
صفحات -
تاریخ انتشار 2009